如果想比較碳化硅避雷器和金屬氧化物避雷器的殘壓,那么必須在同一電流的基礎上比較,在10kA沖擊電流下的比較。當WG24型避雷器和MWB型金屬氧化物避雷器同時流過10kA沖擊電流時,金屬氧化物避雷器殘壓的明顯改進是其最為陡峭的過電壓波形,30μs后才是所謂操作過電壓下的殘壓波形。而這種陡波僅在雷電沖擊時出現。然而,這是很危險的,因為配電變壓器對陡波很敏感。而且避雷器和變壓器的距離也很重要,即所謂的“分離效果”。避雷器殘壓低意味著可以增加保護距離。
電網中的操作過電壓是一種典型的非常危險的電壓振蕩,如在截流時,最高可至三至五倍的相電壓,有時甚至更高,振蕩頻率由電網參數決定。在數千赫茲范圍內。當幾百安培的電流通過時,金屬氧化物避雷器會限制振幅在較低操作電壓保護水平內。電網中的感性貯存能量也會通過避雷器流入大地。另一種危險的過電壓形式是,在操作大容量電容器組,電纜網絡等產生的,這種現象應予注意。在操作電容器組時,有缺陷的操作裝置,負荷開關,或者高壓熔斷器都可能引起重擊穿或電弧重燃。當電容器出現過電壓時,是通過避雷器卸流的。因此,這就要求該避雷器必須在操作過電壓下有較低的殘壓并伴有大吸收能量。這就是以往只有使用火花間隙避雷器,并且是唯一的代價高昂的解決辦法。而金屬氧化物避雷器能量吸收力要比同規格的碳化硅避雷器高三到五倍。
因為金屬氧化物避雷器有較低的殘壓,所以會比碳化硅避雷器釋放過電壓次數更多些。同時性能也不會變壞。事實上,碳化硅避雷器不能抵御長時間的操作過電壓對火花間隙的侵蝕。只要金屬氧化物避雷器不過載,那么它的性能是穩定的。調查表明:數千次過電壓后,金屬氧化物避雷器的特性仍沒有任何變化。金屬氧化物避雷器也能在交流電壓下短時過載,暫時工頻過電壓(TOV)產生的放電電流不會損壞避雷器,這就是金屬氧化物避雷器的短時過載能力。
2.2金屬氧化物避雷器的設計
新型氧化鋅避雷器的設計是很簡單的。主要部件是圓柱形的金屬氧化物電阻。ABB公司還設計了棒式,即所謂“單塊體”等不同規格的品種。圓柱直徑由避雷器能量吸收能力及額定放電電流決定。10kA,47mm的圓形閥片是最為常用的。當然,對于5kA放電電流,也可以使用更小的閥片,圓柱高度決定了持續運行電壓,一般每千伏要求10mm高度。電阻塊的圓柱形側面有玻璃狀的鈍化層,用火焰將鋁噴燒在上、下端的導電面,把電阻塊一個一個地疊起來就可以滿足更高電壓的要求了。
金屬氧化物電阻由堅硬的螺簧固定,螺簧同時還提供了電阻與端子的緊密接觸壓力。上下兩端巨型帽狀物是鑄鋁的,是避雷器的壓力釋放裝置。
金屬氧化物避雷器是國外60年代開始發展起來的過電壓保護的新技術,我國從1976年開始進行電力金屬氧化物避雷器的研究,自80年代以來,我國的金屬氧化物避雷器技術發展很快,并引進國外先進技術及生產線,到目前國內金屬氧化物避雷器的生產,無論從數量、規格、還是從質量上都已形成相當的規模和水平,
[1] [2] 下一頁