国产91免费_国产精品电影一区_日本s色大片在线观看_中文在线免费看视频

您現在的位置: 通信界 >> 數據通信 >> 技術正文  
 
LTE上行DFT/IDFT的一種設計實現[圖]
[ 通信界 / 《微型機與應用》2011年12期 / m.6611o.com / 2011/12/6 11:11:24 ]
 

摘要:根據3GPP協議規定,提出一種適于FPGA實現的解決方案。采用分而治之和WFTA的算式分解,最大限度地減少DFT的運算量;采用塊浮點動態截取多余位寬,減少系統面積;運用4個雙端口RAM讀寫,使系統能運行在流水線結構;采用對稱結構存儲每一級的旋轉因子,最大化共享因子。

為了降低手機終端的功率損耗[1],LTE上行鏈路采用基于DFT擴頻OFDM(DFTS_OFDM)的單載波傳輸,又稱為單載波FDMA(SC_FDMA)。DFTS_OFDM方案的基本結構如圖1所示。3GPP協議規定[2]上行PUSCH信道產生SC_FDMA符號要求DFT點數滿足式(1)。

LTE上行DFT/IDFT的一種設計實現

由幾個參數的變化可以得到最小12點、最大1296點共35種模式的DFT[3]。現在已有的研究方法(如質因子分解結合WFTA算法)解決非2n點DFT,但此法不夠靈活,不適合長度可變的DFT。在數字電視DTMB系統中,3780點FFT的處理采用分裂基與質因子分解結合WFTA算法實現,但對于LTE上行可配置長度DFT的實現還沒有一個成熟有效的方法。

根據LTE實時系統需求采用pipeline流水線結構實現高速可配置的DFT設計,同時在結構和資源利用上進行優化,最后給出仿真圖形以及綜合結果,為上行LTE設計提供一種參考。

LTE上行DFT/IDFT的一種設計實現
LTE上行DFT/IDFT的一種設計實現

2 總體結構及技術實現

2.1 整體結構框圖

LTE DFT的模塊化總體結構如圖3所示,根據算法分析可以知道LTE DFT的分而治之需要幾個階段才能完成,每個階段需要做多次小因子點的DFT,所以圖示是一個循環的形式。由狀態機控制這些階段的完成,直到最后一個循環結束輸出數據。

LTE上行DFT/IDFT的一種設計實現

其中前處理進入WFTA模塊的包括對4個雙端口RAM的讀取控制以及對旋轉因子ROM的讀取,還有旋轉因子地址的計算。飽和操作根據系統的最大bit數限定,對經過WFTA計算后的數據進行飽和處理,超過的bit數直接截取掉。

2.2 技術實現

2.2.1 4個雙端口RAM的數據存儲

為保證pipeline地處理每次循環的數據,這里采用4個雙端口RAM對數據進行存取。對4、2、5、3四種小因子的WFTA計算來說,選4個RAM最方便,如果需要進行4點的WFTA計算,則從每個RAM中讀出一個數據,這僅需要一個時鐘就可讀出4個數據。對2點的WFTA計算,則可以一個時鐘讀出兩組的2點WFTA進行計算。對3點的用一個時鐘,對于5點的用兩個時鐘讀取。

在基于原位計算的基礎上進行改進,加入旋轉數據模塊,是為了將本來是在一個RAM中的數據在填入RAM前進行旋轉,使其在不同的RAM中便于下一階段pipeline讀取。圖4展示了一個最簡單的12點的填寫RAM實例,在開始第一階段前先將12點的輸入數通過載入buffer模塊用12個clk按圖3順序載入4個RAM中,也就是將數據倒位序放入4個RAM中。將倒位序之后的數據重新標號,即1對應載入buffer的3,2對應6等。這樣做的目的是為了方便計算地址。例如,在第一階段讀的過程中,0、1、2、3通過右移2bit,即除以4可以算出地址為0,它們分別對應4個RAM的第0地址;同理4、5、6、7除以4可以得到1,即對應1地址,依此類推。

LTE上行DFT/IDFT的一種設計實現

根據公式4的推導可知在第一階段DFT的處理中不需要乘以旋轉因子,所以旋轉因子為0,在第一階段和第二階段中需要先乘以旋轉因子,旋轉因子按照公式推導處理列出在表中。在第一階段先處理0、1、2、3四點的WFTA,然后按原位順序填入4個RAM,接著處理4、5、6、7四點的WFTA,本來應該也按原位填入RAM中,但是注意到在第二階段需要處理0、4、8三點的WFTA,如果還按照原位填入,則0、4、8三個數據在同一個RAM中,要讀取這3個數需要3個clk,顯然不適應pipeline的處理。所以在做完4、5、6、7四點的WFTA之后將數據旋轉再寫入4個RAM中,同樣將8、9、10、11四點的結果也旋轉,如圖4所示。這樣的讀寫RAM操作可以保證pipeline的處理。

2.2.2 旋轉因子的存取

根據式(4)的推導,每一級之間需要先乘以旋轉因子,對于旋轉因子的地址計算依據式(4)的推導。由于要實現35種可配置模式的DFT設計,所以在實現時要盡可能地考慮旋轉因子的共享存儲,從而盡可能地減少存儲這些旋轉因子的ROM大小。

LTE上行DFT/IDFT的一種設計實現一般做法是將N點的旋轉因子全部存儲,然后根據算出來的nk乘積來查找對應的旋轉因子,這樣35中模式需要很多的ROM地址來存儲。這里將具有2的冪次方關系的旋轉因子共用,如12、24、48…768點DFT的旋轉因子共用,12點的旋轉因子是24點的一部分,24點的是48點的一部分等,這樣就只需要存儲具有兩的冪次方關系的DFT點數的最大那個點768點,又由于旋轉因子自身的對稱性,只存儲最大點數的1/8就可以了,其他部分通過對稱性來查找。具體實現步驟如下:

(1)根據2的冪次方關系特性,將35種模式的DFT旋轉因子分成10組,并存儲這10組中最大的點的八分之一構成一個ROM。對于N點(對應組中最大的點),只存儲[N/8]個地址數據;

(2)對于計算出的旋轉因子地址K,根據它所處的DFT模式,選擇它所屬的組,10組分別用{R0,R1,R2,…,R9}表示;

(3)如果K在R5,則R0+R1+R2+R3+R4為它的偏移地址offset;

(4)12點的DFT需要用此組中最大的768點ROM表來找數,則地址K有可能是[0,…,11]×768/12中的一個作為有效地址eff_dft_addr;

(5)對于算出的eff_dft_addr,根據對[N×1/8],…,[N×7/8]的比較找出它處于768點中的哪個位置(此處N為768),即哪個1/8象限;

(6)找出所處的象限后,再找出其在第一個1/8對稱的位置值dft_8_addr,計算出dft_addr=offset+dft_8_addr,然后在ROM表中找出對應的值,再根據對稱性還原其原來的所屬象限的值。如圖5所示,展示一個點的查找方式。通過查找A″的值來得到A的值。

LTE上行DFT/IDFT的一種設計實現

2.2.3 WFTA的運算單元

WFTA算法對2、3、4、5、7、8、9、16等小N點有較快速處理能力,它將小N點DFT轉換為循環卷積,利用多項式理論使卷積計算盡可能減少乘法。

LTE上行DFT/IDFT的一種設計實現

2.2.4 塊浮點的數據處理

定點運算的特點是速度快但動態范圍小。浮點運算的特點則是動態范圍大但占用資源大。塊浮點具有兩種運算的優點,是兩種運算的折中,讓一組數具有共同的階碼,這個階碼是同組數中最大的那個數的階碼,簡化系統資源提高運算的精度[6]。

如表1所示,因為每次WFTA運算后都有數據位寬的擴展,本結構具有3bit的擴展。為保持輸入wfta_top的模塊數據始終為18bit,這里用塊浮點動態截取的方法對每一級的WFTA結果進行處理,動態截取的位寬決定下一級的數據寬度,同時循環累加每個階段的階碼,在數據輸出時進行還原操作。

LTE上行DFT/IDFT的一種設計實現

3 仿真綜合

圖7所示為12點DFT的仿真圖形,dft模式是第一種,首先data_in_vld為高時開始數據輸入,然后用12個clk將數據讀入4個RAM,之后計算第一級RAM讀取地址將數據讀出,處理3次4點的DFT,處理后將數據寫入RAM,需要3個clk;再后讀出數據做4次3點的DFT,處理后將數據寫入RAM,需4個clk;最后將數據讀出做壓縮還原處理,data_out_vld為高后pipeline出數,需要12個clk。理論上需要31個clk,但是在處理中需要處理與其他模式的共享,還要有打拍延時等操作,實際用掉98個clk。120點的DFT實際用502個clk,理論上是120×2+30+30+24+40=364個clk,說明處理的點數越多冗余clk比例越小。

LTE上行DFT/IDFT的一種設計實現

使用Stratix III EP3SL340F1517I3芯片,運用Quartus II綜合后的結果為:7824個組合ALUT,0個內存ALUT,8699個邏輯寄存器,可達到時鐘124.64MHz,滿足LTE系統時鐘122.88MHz的要求。

文章在介紹LTE上行SC_FDMA的基礎上,對35種模式的DFT預編碼進行算法分析,提出并用FPGA實現了一種高速可配置的方案。文中對數據存儲、WFTA運算單元和塊浮點處理進行簡單表述,根據旋轉因子特性,詳細介紹了旋轉因子的優化,大大降低了35種模式旋轉因子的存儲大小。最后給出的仿真綜合結果表明該方案具有較好的性能。

 

作者:《微型機與應用》2011年12期 合作媒體:《微型機與應用》2011年12期 編輯:顧北

 

 

 
 熱點技術
普通技術 “5G”,真的來了!牛在哪里?
普通技術 5G,是偽命題嗎?
普通技術 云視頻會議關鍵技術淺析
普通技術 運營商語音能力開放集中管理方案分析
普通技術 5G網絡商用需要“無憂”心
普通技術 面向5G應運而生的邊緣計算
普通技術 簡析5G時代四大關鍵趨勢
普通技術 國家網信辦就《數據安全管理辦法》公開征求意見
普通技術 《車聯網(智能網聯汽車)直連通信使用5905-5925MHz頻段管理規定(
普通技術 中興通訊混合云解決方案,滿足5G多元業務需求
普通技術 大規模MIMO將帶來更多無線信道,但也使無線信道易受攻擊
普通技術 蜂窩車聯網的標準及關鍵技術及網絡架構的研究
普通技術 4G與5G融合組網及互操作技術研究
普通技術 5G中CU-DU架構、設備實現及應用探討
普通技術 無源光網絡承載5G前傳信號可行性的研究概述
普通技術 面向5G中傳和回傳網絡承載解決方案
普通技術 數據中心布線系統可靠性探討
普通技術 家庭互聯網終端價值研究
普通技術 鎏信科技CEO劉舟:從連接層構建IoT云生態,聚焦CMP是關鍵
普通技術 SCEF引入需求分析及部署應用
  版權與免責聲明: ① 凡本網注明“合作媒體:通信界”的所有作品,版權均屬于通信界,未經本網授權不得轉載、摘編或利用其它方式使用。已經本網授權使用作品的,應在授權范圍內使用,并注明“來源:通信界”。違反上述聲明者,本網將追究其相關法律責任。 ② 凡本網注明“合作媒體:XXX(非通信界)”的作品,均轉載自其它媒體,轉載目的在于傳遞更多信息,并不代表本網贊同其觀點和對其真實性負責。 ③ 如因作品內容、版權和其它問題需要同本網聯系的,請在一月內進行。
通信視界
華為余承東:Mate30總體銷量將會超過兩千萬部
趙隨意:媒體融合需積極求變
普通對話 苗圩:建設新一代信息基礎設施 加快制造業數字
普通對話 華為余承東:Mate30總體銷量將會超過兩千萬部
普通對話 趙隨意:媒體融合需積極求變
普通對話 韋樂平:5G給光纖、光模塊、WDM光器件帶來新機
普通對話 安筱鵬:工業互聯網——通向知識分工2.0之路
普通對話 庫克:蘋果不是壟斷者
普通對話 華為何剛:挑戰越大,成就越大
普通對話 華為董事長梁華:盡管遇到外部壓力,5G在商業
普通對話 網易董事局主席丁磊:中國正在引領全球消費趨
普通對話 李彥宏:無人乘用車時代即將到來 智能交通前景
普通對話 中國聯通研究院院長張云勇:雙輪驅動下,工業
普通對話 “段子手”楊元慶:人工智能金句頻出,他能否
普通對話 高通任命克里斯蒂安諾·阿蒙為公司總裁
普通對話 保利威視謝曉昉:深耕視頻技術 助力在線教育
普通對話 九州云副總裁李開:幫助客戶構建自己的云平臺
通信前瞻
楊元慶:中國制造高質量發展的未來是智能制造
對話亞信科技CTO歐陽曄博士:甘為橋梁,攜"電
普通對話 楊元慶:中國制造高質量發展的未來是智能制造
普通對話 對話亞信科技CTO歐陽曄博士:甘為橋梁,攜"電
普通對話 對話倪光南:“中國芯”突圍要發揮綜合優勢
普通對話 黃宇紅:5G給運營商帶來新價值
普通對話 雷軍:小米所有OLED屏幕手機均已支持息屏顯示
普通對話 馬云:我挑戰失敗心服口服,他們才是雙11背后
普通對話 2018年大數據產業發展試點示范項目名單出爐 2
普通對話 陳志剛:提速又降費,中國移動的兩面精彩
普通對話 專訪華為終端何剛:第三代nova已成為爭奪全球
普通對話 中國普天陶雄強:物聯網等新經濟是最大機遇
普通對話 人人車李健:今年發力金融 拓展汽車后市場
普通對話 華為萬飚:三代出貴族,PC產品已走在正確道路
普通對話 共享退潮單車入冬 智享單車卻走向盈利
普通對話 Achronix發布新品單元塊 推動eFPGA升級
普通對話 金柚網COO邱燕:天吳系統2.0真正形成了社保管